CASToR[1]: A Generic Data Organization and Processing Code Framework for Multi-Modal and Multi-Dimensional Tomographic Reconstruction

Thibaut Merlin¹, Simon Stute², Didier Benoit¹, Julien Bert¹, Thomas Carlier³, Claude Comtat², Frédéric Lamare⁴, and Dimitris Visvikis⁴

¹LATIM - U1101 INSERM, Brest, FRANCE ²UMIV U1023 SHFI, Orsay, France ³CRCNA, Nantes, France ⁴INCA - UMR CNRS 5287, Bordeaux, FRANCE

Motivations for an unified tomographic image reconstruction platform

- Natural differences in the dataset acquisition / organization ...
 - ... lead to algorithms optimized for specific applications, with potential drawbacks:
 • Restricted use of methodologies however compatible with other sets of conditions
 • Difference in duplication of implementations
 • Possibly hardly tractable code development

- Additional drives for an unified platform:
 • Analogous components (projector, optimizer, ...) for PET/SPECT/CT tomographic reconstruction
 • Re-emergence of iterative reconstruction in CT[2]

General data file Description

- Generic Event structure for all type of data (modality/data mode)
- Reconstruction framework is Event-based
- PET/SPECT Event can be of “list-mode” type (i.e. single detected event) or histogram type (i.e. content of a histogram bin)
- Events must contain mandatory fields: timestamp, event value, geo localizer indices and optionally: TOF, scatter/random rate, norm factors, etc... (optional fields)

- System configuration file
 • Modality (PET / SPECT / CT)
 • Purpose (tracer dynamics, gated dataset)
 • Data format (list-mode/histogram)

Proposed solution

- Unified and generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction.
- Analogous data organization for list-mode/histogram.
- Compromise between genericity and efficiency
- Focus on the modularity and extensibility of the platform

CASToR[3] Iterative framework

- Reconstruction parameters
 • Image dimensions
 • Number of iterations/subsets
 • Select reconstruction components
 • Components configuration parameters/variables

- PET/SPECT/CT datafile
 • Modality
 • Modality histogram/ist
 • Number of events
 • System name
 • Acquisition metadata
 • Enabled/Disabled corrections
 • Raw data

- Sensitivity (list-mode) / Blank scan (CT) generation

- Main loops of the iterative core algorithm
 • Geometry generation
 - Components Initialization
 - Sensitivity (list-mode) / Blank scan (CT) generation

- System geometry
 • PET / SPECT / CT Integrator
 • PET / SPECT / CT
 • PET / SPECT / CT

- Event
 • Sliced axial view
 • Sliced sagittal view
 • Sliced coronal view

- Projector
 • Sliced axial view
 • Sliced sagittal view
 • Sliced coronal view

- Optimizer
 • Spatial regularization
 • Image deformation
 • Dynamic Model
 • Generic classes

- Ex : Histogram reconstruction using different optimization algorithms

- Ex : List-mode 4D reconstruction without (left) and with (right) temporal regularization

Conclusions & Perspectives

- Proposed architecture handles histogram/list-mode multi-modal and multi-dimensional iterative reconstruction
- Simplified integration of new reconstruction features / methodologies, with limited duplication of implementations
- Good computing performances in its parallel execution (Unique call to the projector by event allowed a 1.5 to 2.75 increase speedup ratios on the test platform, as well as moderate cost of genericity)
- Proposed implementation will be soon available through an open-source software[1]

References